
Quick start guide

Quick start guide

iii

Table of Contents
1. Pet Hotel sample application .. 1
2. Platypus.js installation ... 2
3. The sample application requirements .. 3
4. The sample project creation and setup ... 4
5. Defining the database structure ... 17
6. Owners list form .. 18
7. Owners details, pets and visits form ... 24
8. Scalar and collection properties .. 28
9. Owners report .. 37
10. Revision History .. 39

iv

List of Figures
3.1. Pet Hotel knowledge domain model diagram .. 3
4.1. Platypus designer interface ... 5
4.2. Project creation ... 6
4.3. Choose project name .. 7
4.4. Setting project properties ... 8
4.5. Selecting Java EE server type .. 9
4.6. Adding Apache Tomcat server folder .. 10
4.7. Tomcat properties ... 11
4.8. Choosing project’s Java EE server .. 12
4.9. Database type .. 13
4.10. Connection properties ... 14
4.11. Schema type .. 15
4.12. Connection name .. 16
5.1. Database structure ... 17
6.1. Owners view ... 18
6.2. Connection name .. 19
6.3. Binding data model to grid .. 20
6.4. Setting grid columns .. 21
7.1. Owner detail ... 25
7.2. Created datamodel .. 27
8.1. Pets collection ... 28
8.2. Visits collection .. 28
8.3. Field binding ... 29
8.4. Combo view .. 30
8.5. Combo view properties .. 31
8.6. Visit grid properties .. 32
8.7. Visit grid columns view ... 33

1

Chapter 1. Pet Hotel sample application
In this tutorial you’ll learn how to create a simple business application in JavaScript using Platypus.js.
The sample source code is available for download from the Platypus.js project’s repository [https://
github.com/altsoft/pethotel] on github.

Please refer to the Development Guide and the Administration Guide for more details about
Platypus.js.

https://github.com/altsoft/pethotel
https://github.com/altsoft/pethotel
https://github.com/altsoft/pethotel

2

Chapter 2. Platypus.js installation
Java Runtime and JDK 8 update 66 or higher are required for Platypus.js applications development.

Install the Platypus.js IDE, the Platypus.js runtime components and Apache Tomcat 8.0.24+ to enable
running a web client:

• Download [http://platypus-platform.org/download.html] the Platypus.js installer bundle from the
project’s website for your operating system.

• Run the installer.

• Follow the wizard’s steps and install the required components.

http://platypus-platform.org/download.html
http://platypus-platform.org/download.html

3

Chapter 3. The sample application
requirements

The Pet Hotel is a simple business application for cats and dogs hotel accounting.

The hotel’s administrator role is the only user role defined for this application.

An administrator can perform the following actions:

• Search for the pet owners by her/his name and display the owners list.

• Add, delete and update owner’s data.

• Display an owner’s pets as a list.

• Add, delete and update an owner’s pets records.

• Add, delete and update the hotel attendance data for a pet.

• Display and print the owners report.

The entered data must be validated according to the following rules:

• All owner’s and pet’s data fields are mandatory.

• The check-in date must precede the check-out date. Database structure is shown on following
diagram (Fig.model diagram).

Figure 3.1. Pet Hotel knowledge domain model diagram

4

Chapter 4. The sample project creation
and setup

During the installation process the Platypus.js IDE is configured for the correct path to the runtime
directory, Tomcat and a default database connection. Check the platform’s runtime directory on Tools
Platypus Platform menu item in the global menu.

After first launch of Platypus designer you will get window as it shown on Fig. start screen.

The sample project
creation and setup

5

Figure 4.1. Platypus designer interface

To create Platypus project you should select menu item File # New Project (Fig. project creation).

The sample project
creation and setup

6

Figure 4.2. Project creation

Next, you should set project’s name and it’s location (Fig. project name).

The sample project
creation and setup

7

Figure 4.3. Choose project name

After project was created, we will set it’s properties so he could be started as HTML5 application.
Perform right mouse button click and in menu choose Properties. In modal window,shown on Fig.
project properties. Select Client # HTML5 web browser and Application server # J2EE Server.

The sample project
creation and setup

8

Figure 4.4. Setting project properties

In most cases Apache Tomcat application server is already installed and configured to work with
Platypus, so you can skip following steps and check J2EE Server settings tab (Fig. project server).
In other cases you should add J2EE server manually. To do this, you should go to Services tab and
perform right click on Servers item. In context menu choose Add Server, on screen you will see
following window (Fig. add server).

The sample project
creation and setup

9

Figure 4.5. Selecting Java EE server type

After you have selected server, click the Next button. We will show how to set Apache Tomcat server.
Using next menu (Fig. adding Tomcat), browse server folder location and set Username and password
for user manager role.

The sample project
creation and setup

10

Figure 4.6. Adding Apache Tomcat server folder

Fine adjustment of Tomcat such as server port, could be performed on Fig. tomcat properties.

The sample project
creation and setup

11

Figure 4.7. Tomcat properties

Finally you should set J2EE Server settings for project properties (Fig. project server).

The sample project
creation and setup

12

Figure 4.8. Choosing project’s Java EE server

Create a new database connection for the Pet Hotel application. You can use any of the databases
supported by the platform. The easiest way is to use H2 database, which is supplied with the platform
and does not require any additional configuration or administration.

Use the instructions below to create the H2 datasource connection:

Go to the Services panel. Select the New Connection… menu item from the Databases node context
menu.

The sample project
creation and setup

13

Figure 4.9. Database type

Select the H2 JDBC driver, provide a user name, a password and a JDBC URL in the following
format:

The sample project
creation and setup

14

Figure 4.10. Connection properties

Select PUBLIC as the connection’s default schema.

The sample project
creation and setup

15

Figure 4.11. Schema type

Click Next button. H2 database will be started and pet_hotel database will be created in the user’s
directory if it is not exist yet.

Caution

Connection name should be named by the JavaScript variables rules.

Set pet_hotel as a connection name.

The sample project
creation and setup

16

Figure 4.12. Connection name

Create a new project for Pet Hotel application and provide the project’s name and home directory. In
the project’s properties select the pet_hotel from the list as a default Datasource.

17

Chapter 5. Defining the database structure
One way to begin building your application is to start from creating its database structure. When using
Platypus.js, you need to create a database structure diagram.

Add a new Database structure diagram application element. File # New File # Database structure
diagram.

On the diagram create new database tables named Owner, Pet, PetType and Visit according to the
knowledge domain model. A numeric primary key is automatically created for each new table. Add all
the required fields for the tables.

Create the foreign key links by connecting foreign key fields with the correspondent primary keys
files. Please note that the connected fields must have the same data type.

Figure 5.1. Database structure

18

Chapter 6. Owners list form
We are going to build the user interface allowing to display the owners list.

Create a new Form application element named OwnersView, check that the JavaScript constructor for
this form is also set to OwnersView. This form will display the owners list.

Also create a new Form application element named OwnerView , check that the constructor is also
set to OwnerView. The owners details will be shown on this form. Save this form but for this moment
leave it blank.

Now lets edit the OwnersView form. OwnersView form will contain (Fig. owners view):

• On the top of the form: the panel with the Add and Delete buttons as well as the search text field
and the Search button.

• The ModelGrid widget to display the owners list.

Figure 6.1. Owners view

Using Palette tool add elements to panel by drag-drop. Add the header panel from the containers
palette on the form, put the buttons and the text field from the standard components palette on the
panel. Provide meaningful names for the added components. Set texts to the added buttons. Drag-
and-drop a ModelGrid from the model widgets palette on the form below the header panel and also
provide a name for it.

Next lets configure the data model for our OwnersView form. Data model allows persistent data to be
read and written from/to the database. In Platypus.js data model entities are created on the basis of
data sources. To access relational data create data sources from SQL queries.

Owners list form

19

Create a new Query application element named OwnersQuery with SQL to get filtered records from
the Owner table:

/**
 * @name OwnersQuery
 * @public
 */
Select t1.OWNERS_ID, (t1.FIRSTNAME || ' ' || t1.LASTNAME) AS fullName, t1.ADDRESS AS address
, t1.CITY AS city, t1.TELEPHONE AS phone, t1.email AS email
From OWNERS t1
 Where t1.LASTNAME Like :lastNamePattern

In this SQL query we are concatenating the firstname and lastname fields to return an owner’s full
name. Use the :lastNamePattern to provide a search pattern for the owner’s last name. Adding alias
to the fields allows us to use ORM (Object Relation Mapper) on any database in future.

Add @public annotation to the query’s header to enable access via network from a remote data model
running on a client and save the query.

Drag-and-drop it to the OwnersView data model. You may also go to the new entity’s properties and
provide its name, for example owners.

Figure 6.2. Connection name

Next, bind the ModelGrid widget to the owners entity as it shown in figure grid binding. Select the
Model binding data parameter and select the model entity to bind. Create the grid’s columns using
Fill columns context menu item. After that provide the meaningful columns names and correct the
columns captions (Fig. Columns settings).

Owners list form

20

Figure 6.3. Binding data model to grid

Owners list form

21

Figure 6.4. Setting grid columns

ModelGrid widget enables rows insertions and deletions as well as editing of its its cells. The changes
will be made in the bounded data model entity. This way we can create a simple CRUD functionality
even without any coding. For our grid we disable this feature, because we are going to use a separate
form to edit a single owner’s record — disable deletable, insertable and editable properties of the grid
in it’s properties menu.

Lets write some JavaScript code for our form.

By default after creation form’s code looks like this:

function OwnersView() {
 var self = this
 , model = P.loadModel(this.constructor.name)

Owners list form

22

 , form = P.loadForm(this.constructor.name, model);

 self.show = function () {
 form.show();
 };

 // TODO : place your code here

 model.requery(function () {
 // TODO : place your code here
 });
}

Double click on the Add button and enter the code responsible for showing the OwnerView form:

/**
 * Add button's click event handler.
 * @param event Event object
 */
form.btnAdd.onActionPerformed = function (event) {
 var ownerView = new OwnerView();
 ownerView.showModal(refresh);
};

In this event handler we create a new instance of the owner’s details form and show it as a modal
window. We will create showModal method in detailed OvnerView later. We provide the refresh
function as a parameter to enable data model requery when closing the owner’s details form:

function refresh() {
 model.requery();
}

Double click on the Delete button and provide the code fragment responsible for an owner’s record
deletion:

/**
 * Delete button's click event handler.
 * @param event Event object
 */
form.btnDelete.onActionPerformed = function (event) {
 if (confirm("Delete owner?")) {
 for (var i in form.modelGrid.selected) {
 model.owners.splice(model.owners.indexOf(form.modelGrid.selected[i]), 1);
 }
 model.save();
 }
};

On Delete button click we are showing a confirmation dialogue and if the action is confirmed the
current row in the owners query will be deleted. Then all changes will be saved to the database. Data
model is JavaScript array, so we use method splice to delete selected rows. Information about selected
rows we get from modeGrid.

Provide a handler for the onMouseClicked event of the grid widget:

/**
 * Grid click event handler.
 * @param event Event object

Owners list form

23

 */
form.modelGrid.onMouseClicked = function (event) {
 if (event.clickCount > 1) {
 var ownerView = new OwnerView();
 ownerView.showModal(refresh, model.owners.cursor.OWNERS_ID);
 }
 };

The code is seems familiar except the handling of the ownerID parameter containing the grid’s current
owner’s record identifier.

Double click on the Search button to provide the search by a last name action logic:

/**
 * Search button click event handler.
 * @param event Event object
 */
form.btnSearch.onActionPerformed = function (event) {
 var searchText = "%" + form.txtSearch.text + "%";
 model.owners.params.lastNamePattern = searchText;
 model.owners.requery();
};

When a new value is assigned to a model’s parameter the model’s data linked to this parameter is
automatically required according to the new value.

At this point we are ready to run and debug our application. Some test data can be added to the
database tables using our SQL query. When a query is run the result are shown in a separate results
window. You can also insert, delete and update database records using this window.

To obtain all data on form load we will add following code to method show:

self.show = function () {
 form.show();
 var searchText = "%%";
 model.owners.params.lastNamePattern = searchText;
 model.owners.requery();
 };

24

Chapter 7. Owners details, pets and visits
form

Open the OwnerDetails form we’ve created earlier. This form will contain the user interface related to
a concrete owner, her/his pets and hotel visits.

Owners details,
pets and visits form

25

Figure 7.1. Owner detail

Owners details,
pets and visits form

26

Add the Name, Last Name, Address, City, Phone and Email model TextField widgets for an owner’s
fields. Align this components to the right. Add Label components to the left of the correspondent
input text field. Provide meaningful names for all components and set the labels texts.

Drag-and-drop a SplitPane container from the containers palette and set its separator orientation to
vertical.

Add a panel container on the left and right sides of the SplitPane. The left panel is for an owner’s
pets and the right side is for the pet’s visit to the hotel.

Place the Add and Delete buttons on top of the pets and the visits panels.

Add ModelGrid widgets on the left and the right panels to display pets and the concrete pet’s visits
list.

At the bottom of the form add Ok and Cancel buttons to save an owner’s data, as well as the pets and
the pet’s visits data.

At this moment we have our owner’s details form mock layout. Next we will configure the form’s
data model based on the SQL queries and write some JavaScript code.

Add a new application element for a SQL query selecting data for the specific owner by her/his
identifier:

/**
 * Gets the owner by its ID.
 * @public
 * @name OwnerQuery
 */
Select *
From Owners t1
 Where :ownerID = t1.owner_id

Add a query for the pets list for the specific owner:

/**
 * Gets the pets for concrete owner.
 * @public
 * @name PetsQuery
 */
Select *
From Pets t1
 Where :ownerID = t1.owner

Next, add a query for getting all the hotel visits for the all pets of the specific owner:

/**
 * Gets all visits for concrete owner.
 * @public
 * @name VisitsQuery
 */
Select t1.visit_id, t1.pet, t1.fromdate,
 t1.todate, t1.description
From Visit t1
 Inner Join PetsQuery t2 on t1.pet = t2.pet_id

Add a simple query for selecting all pets types:

Owners details,
pets and visits form

27

/**
 * Gets all types for pets.
 * @public
 * @name PetTypesQuery
 */
Select * From PetType

In data model of ownerView form, add this four queries so that our model will looks like shown in fig.
owner view data model

Figure 7.2. Created datamodel

28

Chapter 8. Scalar and collection
properties

We need to create some scalar and collection properties for our OwnerView datamodel. You should
select link between petsQuery and petTypesQuery and perform right mouse button click. In properties
window (Fig. pets Collection set name for Scalar property name and Collection property name.
Perform same task on connection between petsQuery and visitsQuery (Fig. visits collection).

Figure 8.1. Pets collection

Figure 8.2. Visits collection

As the form’s data model configuration is completed, bind the form’s model widget to the model. Set
the Model binding field property for the ModelText widgets on the form and bind them to the name,
last name, city and telephone fields of the ownerQuery entity and set field’s property as corresponding
data field;

Scalar and collection properties

29

Figure 8.3. Field binding

The visits entity will hold all the visits for the all pets of the concrete owner, but we want to show
on the right grid only the visits for the currently selected pet. To solve this issue we will use our
collections, and create master-detail view.

In Pet’s grid bind data to corresponding query (petsQuery) and use Fill columns context menu to
create columns. Using inspector (as it was shown earlier in Fig. Inspector) delete unnecessary columns
with id’s and delete service column. Provide the correct text for the columns headers. Add Check grid

Scalar and collection properties

30

column, so the user could select multiple pets. Unlike the owners list grid the pets and visits grids will
allow edit their cell data.

Provide the ModelCombo widget as a cell component for the petType column on the pets grid (Fig.
Combo View). Set scalar property name, that we have defined earlier (pets collection) type to this
column. For ModelCombo set displayField property to name and displayList to petTypesQuery (Fig.
combo properties).

Figure 8.4. Combo view

Scalar and collection properties

31

Figure 8.5. Combo view properties

Master-detail view is creating by using two model grids, on same form. Master - is our pets, detail -
pet’s visit. We should set grid properties for visits. Set data field - petsQuery, but field must be set as
cursor.visits. This collection we have also defined earlier (visits collection) ORM of Platypus.JS will
automatically return certain collection for certain pet (Fig. visit grid properties).

Scalar and collection properties

32

Figure 8.6. Visit grid properties

Add model grid columns and set they field’s as corresponding names of visitsQuery fields. Set
presentation type in inspector as it shown in Fig. visit grid column properties.

Scalar and collection properties

33

Figure 8.7. Visit grid columns view

At the next step we’ll write some JavaScript code for the OwnerView form.

self.showModal = function (aCallback, aID) {
 callback = aCallback;
 if (aID) {
 model.ownerQuery.params.ownerID = aID;
 model.requery();
 } else {
 model.ownerQuery.push({});
 }
 form.showModal();
};

Double click on the OK button and insert the handler code to save the owner’s data:

form.btnSave.onActionPerformed = function (event) {
 if (model.modified) {
 var message = validate();
 if (!message) {
 model.save(function () {
 callback();
 }, function () {
 P.Logger.Info("Failed on save");
 });
 form.close();
 } else {
 alert(message);
 }
 } else {
 form.close();
 }
 };
}

In the handler code snippet above validation function is invoked and if successful then changes are
saved to the database. Write the validate function stub we’ll return to its code later.

Scalar and collection properties

34

/**
 * Validates the view.
 * @return Validation error message or false value if form is valid
 */
function validate() {
 var message = validateOwner();
 message += validatePets();
 message += validateVisits();
 return message;
}

Double click on the Cancel button and insert JavaScript code to perform the form close action:

/**
 * Cancel button's click event handler.
 * @param event Event object
 */
form.cancelButton.onActionPerformed = function(event) {
 form.close();
}

The event handler above will be invoked on form initialization.

Now it is time to add the code for the pets and their visits management.

Insert pets Add button onActionPerformed event handler to add a new pet:

/**
 * The add pet button's click event handler.
 * @param evt Event object
 */
form.btnAddPet.onActionPerformed = function (event) {
 model.petsQuery.push({});
};

Insert pets Delete button onActionPerformed event handler to delete a pet:

/**
 * Delete pet button's click event handler.
 * Deletes the selected pets.
 * @param evt Event object
 */
form.btnDeletePet.onActionPerformed = function (event) {
 if (confirm("Delete selected pets?")) {
 for (var i in form.grdPets.selected) {
 model.petsQuery.splice(model.petsQuery.indexOf(form.grdPets.selected[i]), 1);
 }
 model.save();
 }
};

Insert visits Add button onActionPerformed event handler to add a new visit to the hotel:

/**
 * Add visit button's click event handler.
 * @param evt Event object
 */
form.btnAddVisit.onActionPerformed = function (event) {
 model.visitsQuery.push({});

Scalar and collection properties

35

 model.visitsQuery.cursor.FROMDATE = new Date();
};

Insert visits Delete button onActionPerformed event handler to delete a pet’s visit:

/**
 * Delete visit button's click event handler.
 * @param evt Event object
 */
form.btnDeleteVisit.onActionPerformed = function (event) {
 if (confirm("Delete selected visits?")) {
 for (var i in form.grdVisits.selected) {
 model.visitsQuery.splice(model.visitsQuery.indexOf(form.grdVisits.selected[i]), 1);
 }
 model.save();
 }
};

Next we will provide the logic for the form validation. Edit the validate function and implement it
as follows to perform the owner’s and the pets and visits validation:

/**
 * Validates the view.
 * @return Validation error message or empty String if form is valid
 */
function validate() {
 var message = validateOwner();
 message += validatePets();
 message += validateVisits();
 return message;
}

Add owner’s fields validation code:

/**
 * Validates owner's properties.
 * @return Validation error message or empty String if form is valid
 */
function validateOwner() {
 var message = "";
 if (!form.edFirstName.value) {
 message += "First name is required.\n";
 }
 if (!form.edLastName.value) {
 message += "Last name is required.\n";
 }
 if (!form.edAddress.value) {
 message += "Address is required.\n";
 }
 if (!form.edCity.value) {
 message += "City is required.\n";
 }
 if (!form.edPhone.value) {
 message += "Phone number is required.\n";
 }
 if (!form.edEmale.value) {
 message += "E-Mail is required.\n";
 }
 return message;

Scalar and collection properties

36

}

The pets validation code is as follows:

/**
 * Validates pets entity.
 * @return Validation error message or empty String if form is valid
 */
function validatePets() {
 var message = "";
 pets.forEach(function(pet) {
 if (!pet.name) {
 message += "Pet's name is required.\n";
 }
 if (!pet.birthdate) {
 message += "Pet's birthdate is required.\n";
 }
 if (!pet.type) {
 message += "Pet's type is required.\n";
 }
 });
 return message;
}

Insert the visits validation code for the currently selected pet:

/**
 * Validates visits entity.
 * @return Validation error message or empty String if form is valid
 */
function validateVisits() {
 var message = "";
 form.grdVisits.data.forEach(function (visit) {
 if (!visit.fromdate) {
 message += "Visit from date is required.\n";
 }
 if (!visit.todate) {
 message += "Visit to date is required.\n";
 }
 if (visit.fromdate >= visit.todate) {
 message += "Visit 'from' date must be before 'to' date.\n";
 }
 });
 return message;
}

At this stage you need to run and test your application. To do that, run the application with desktop
client and direct connection to the database. Use step-by-step code debugging to make sure your
JavaScript works correctly.

37

Chapter 9. Owners report
In this section we are going to create a simple report about the owners.

Create a new Report application element with the OwnersReport name. Add OwnersQuery to data
model.

self.execute = function (onSuccess, onFailure) {
 model.ownersQuery.params.lastNamePattern = "%%";
 model.requery(function () {
 var report = template.generateReport();
 report.show(); //| report.print(); | var savedTo = report.save(saveTo ?);
// onSuccess(report);
 }, onFailure);

};

On layout tab click on edit report template to edit the report template. Provide the report’s header,
owners tables columns headers and the columns tags as it shown below:

Full Name Address City Phone E-mail

${model.ownersQuery.fullName}${model.ownersQuery.address}${model.ownersQuery.city}${model.ownersQuery.phone}${model.ownersQuery.email}

Go to the OwnersView form and add the Report button. Change the button name, the caption text and
provide its press event handler code:

/**
 * Report button click event handler.
 * @param evt Event object
 */
form.btnReport.onActionPerformed = function (event) {
 var oReport = new OwnersReport();
 oReport.execute();
 };

Here we can create a new report instance, set its parameter to the similar parameter of
the`OwnersView` form and display the report.

But this will work only in SE client. To make this work on HTML5 application, we should create new
server module, and place code as shown below:

/**
 *
 * @constructor
 * @public
 */
function serverModule() {
 var self = this, model = P.loadModel(this.constructor.name);

 self.execute = function (reportSuccessCallback) {
 var oReport = new OwnersReport();
 oReport.execute(reportSuccessCallback);
 };
}

Owners report

38

Because we are going to call our server module over network, we should add annotation @public (like
in queries).

On the next step we need to modify report generation code, where we will return generated report to
callback.

self.execute = function (onSuccess, onFailure) {
 model.ownersQuery.params.lastNamePattern = "%%";
 model.requery(function () {
 var report = template.generateReport();
 //report.show(); | report.print(); | var savedTo = report.save(saveTo ?);
 onSuccess(report);
 }, onFailure);
};

We also should rewrite code in Report button:

var reportCallback = function (report) {
 report.show();
};

form.btnReport.onActionPerformed = function (event) {
 var srvModule = new P.ServerModule("serverModule");
 srvModule.execute(reportCallback);
};

After report has been generated, it will be returned to client. If you are launching your’s application as
HTML5 client, then report will be downloaded by browser when it’s method show is called, otherwise
it will launch assosiated application (Excel for example).

Thanks for you attention.

39

Chapter 10. Revision History
0-0 8.08.2013 Vadim Vashkevich vv@altsoft.biz [mailto:vv@altsoft.biz] Maxim Lipnin
ml@altsoft.biz [mailto:ml@altsoft.biz] Initial revision

0-0 29.04.2015 Eugeny Konstantinov jskonst@altsoft.biz [mailto:jskonst@altsoft.biz] Marat
Gainullin mg@altsoft.biz [mailto:mg@altsoft.biz] Update doc to platypus version 5.0

mailto:vv@altsoft.biz
mailto:vv@altsoft.biz
mailto:ml@altsoft.biz
mailto:ml@altsoft.biz
mailto:jskonst@altsoft.biz
mailto:jskonst@altsoft.biz
mailto:mg@altsoft.biz
mailto:mg@altsoft.biz

	Quick start guide
	Table of Contents
	Chapter 1. Pet Hotel sample application
	Chapter 2. Platypus.js installation
	Chapter 3. The sample application requirements
	Chapter 4. The sample project creation and setup
	Chapter 5. Defining the database structure
	Chapter 6. Owners list form
	Chapter 7. Owners details, pets and visits form
	Chapter 8. Scalar and collection properties
	Chapter 9. Owners report
	Chapter 10. Revision History

